If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=2Y^2+15Y+3
We move all terms to the left:
-(2Y^2+15Y+3)=0
We get rid of parentheses
-2Y^2-15Y-3=0
a = -2; b = -15; c = -3;
Δ = b2-4ac
Δ = -152-4·(-2)·(-3)
Δ = 201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{201}}{2*-2}=\frac{15-\sqrt{201}}{-4} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{201}}{2*-2}=\frac{15+\sqrt{201}}{-4} $
| 6-4n+2n=2 | | .4x–5=16 | | 5x+2x+7+12=189 | | -3x+7+6×=28 | | 3w+20=8(w+5) | | Y=3x^2+17x+4 | | -1(6-x)=6(-1-4) | | 6+2x-1=7x+15-3x | | 37=v/2+12 | | 3.2x+8.3=1.5x+20.2 | | x(20-2x)(11-2x)=0 | | 15=3u-15 | | 16x+23=1080 | | Y=2x^2+13x+19 | | 28-3x=12-x | | n/7=106 | | 7m+18=11 | | 6b+2=50 | | 12b-9+2b-b=-27 | | Y=-20x+180 | | 13w+5=18w+(-60) | | Y=21x^2-38x+16 | | M2-m=56 | | 4x-5=-2x+3= | | 110+8x-1+5x+36+116+19+6x-2=180 | | 13w+5=18w-10 | | M2=m=56 | | 10^7x=51 | | Y=21x^2-46x+24 | | 15x+2=10X*7 | | x^54=3x | | -9-3x-x=-45 |